If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-92x-156=0
a = 8; b = -92; c = -156;
Δ = b2-4ac
Δ = -922-4·8·(-156)
Δ = 13456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13456}=116$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-92)-116}{2*8}=\frac{-24}{16} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-92)+116}{2*8}=\frac{208}{16} =13 $
| v^2-12v+21=1 | | 1/3x+(12-x)=39 | | 8/x=15/225 | | 4x^2+32x=- | | 4*(x-2)^2=25 | | 2x(x+4)=x+4 | | 8k^2-16k-10=0 | | 4*(x-2)=25 | | 1/3=9/k | | 4x-7x-5=0 | | 1/10=k/1 | | 4(2+x)=10 | | 4x^2-96=4 | | -4f^2+48f+68=0 | | 3x-1/4-x+2/2=1/4 | | 5x-8=-6x+14 | | a2=64 | | 1200+45n=1800=60n | | (x-3)^2-(3x-2)^2=0 | | 8x(-8x)=9 | | 2x-(x/x-1)=1+(1/x-1) | | 3u^2–12u=111 | | X+x.3=120 | | 8x-(-8)=9 | | 3u2–12u=111 | | 2x^2+x+8=x^2-5 | | 2x^2+8=x^2-5 | | 10x=2x+3 | | 3(2^x+1)-2^x+2^2+5=0 | | 94x/x+3=0 | | 6(2x+4)=4(3x | | 9-1(2x-6)=7x |